Measuring waste prevention and reuse: digital opportunities

Nordic Council of Ministers

Bjørn Bauer Director PlanMiljø

What cannot be measured will not be done

THE PROJECT

OBJECTIVE

Enable the Nordic Council of Ministers (who commissioned the project) and the Nordic countries to take decisions on future monitoring of waste prevention

OUTPUTS

- A collection of 15 cases on digital monitoring of waste prevention
- Analysis of waste prevention monitoring in the Nordics
- Report on possibilities and prospects in digital measurement of waste prevention
- Recommendations on ways to improve digitalised monitoring of reuse and waste prevention in the Nordics

WHAT IS WASTE **PREVENTION?**

- - products

Measures taken before a substance, material or product has become waste, that reduce: • The quantity of waste, including through the re-use of products or the extension of the life span of

 The adverse impacts of the generated waste on the environment and human health The content of hazardous substances in materials and products (WFD).

WASTE PREVENTION AND CIRCULAR ECONOMY

		THE CIRCULARITY LADDER
Smarter creation and use of products	R0 Refuse	Turning a product redundant by cancelling its f
	R1 Rethink	Intensifying product use (e.g. via product shari
	R2 Reduce	More efficient use or manufacture of products
Extending the lifespan of products and parts	R3 Reuse	Reuse of discarded yet still usable product, for
	R4 Repair	Repair and maintenance of broken or malfunct
	R5 Refurbish	Refurbishing and/or modernising an older proa
	R6 Remanufacture	Using parts of a discarded product in a new pro
	R7 Repurpose	Using discarded products or their parts in new
Useful application of materials	R8 Recycle	Processing of materials to achieve the original
	R9 Recover	Incineration of materials, recovering their ener

function, or by substituting it with a different product

ing or multifunctional products)

with use of fewer natural resources and materials

the same purpose, by a different user

tioning product

duct, so it can be used in its original function

oduct of the same function

products with a different function

high-quality or reduce to low-quality

rgy (most often not included as a circular strategy)

NORDIC WASTE PREVENTION MONITORING

	Existing indicators used to measure waste p	
DK	 Resource productivity (RMC/GDP) 	
	- Revenue from and products certified with the Nordic Swan	
	- Share of construction certified under the Nordic Swan, DGNB, LEED or	
	- Municipal waste/capita	
FI	 EEE re-use volume (tonnes/year) 	
	 Municipal waste generation / cap 	
	 Waste generation/ GDP 	
NO	- EEE re-use volume (tonnes/year),	
	- Municipal waste generation	
SE	 Consumption of textiles/capita/year 	
	- Consumption of plastic carriers/person/year.	
	- Municipal waste generation	
	- Food waste generation	
	- Public authorities carrying environmental management (certification v	

revention

BREEAM

with EMAS or ISO 140002).

THEORY OF CHANGE

INNOVATIVE WASTE PREVENTION MONITORING

REUSE

of discarded yet still usable product, for the same purpose, by a different user

(EU regulation soon to be)

FOUR CHANNELS OF DATA

- 1. Second hand shops
- 2. Online platforms that
 - mediate transactions
- 3. Flea markets
- 4. Informal give-aways among
 - friends and families

UNIT Monetary or weight

and/or give-aways

REPAR

of defective products so it of be used with its original function

NO OFFICAL MONITORING STANDARD

REPAIRABILITY

- Availability of repair guides and remote assistance
- parts
- design
- Built in repair diagnostics

- Information about updates and
- possibility to reset software
- Accessibility and price of spare
- Ease of disassembly / modular

SHARE OF PRODUCS REPAIRED By households/ professionals

(Design for) LONGEVITY

In such a way that encourages longer use than the industry standard in practice and scale

NO OFFICAL MONITORING STANDARD

PRODUCT LIFETIME

•

DESIGN FOR LONGEVITY

- end of life

What is the average lifetime of a product category?

Timeless design Durable material choices Enable 'circular treatment' by the

DIGITAL MONITORING OF WASTE PREVENTION

E-COMMERCE SOCIAL MEDIA **ONLINE MEDIA**

- DIGITAL BUSINESS MODELS
- **DIGITAL PASSPORTS**
- **PRODUCT DATA FROM BUSINESS**
- **COMPANY WEBPAGES**

TEXT MINING

WEB-SCRAPING

- SENSORS AND TAGS
- IMAGE RECOGNITION
- **BUSINESS INVOLVEMENT**

BIG DATA ANALYTICS MACHINE LEARNING

ARTIFICAL INTELLIGENCE

Key areas for future digital monitoring of waste prevention and reuse

Product lifespans and repair activities

- Digital product passports and product environmental footprints
- Product tracking and product ID through sensor and tagging technologies

Reuse activity (quantity and value), use rates for shared-use products

 Data detailing transactions - from online marketplaces, sharing platforms, PSS platforms, (public and private) procurement systems and potentially also payments systems.

Physical framework conditions for reuse

• Data on reuse and waste prevention infrastructure: reuse shops, flea markets, and reuse bins, repair shops and cafes.

The 'transition process' - actions taken, reuse and waste prevention discussions on popular culture and in research, how often people seek second-hand products.

• Internet publishing, including company web pages, social media, news outlets, libraries and journals, as well as analysing search trends in search engines like Google.

PlanN

MAIN CHALLENGES

- Basically: Identifying indicators and proxies of relevance
- Basically: Identifying data streams, setting up data harvesting and analytical systems
- Digital waste prevention monitoring competencies are not typically found within the responsible authorities.
- Much of the data identified is held in private hands or for other reasons not publicly available. Some data may be business sensitive.
- Data may be subject to GDPR and other privacy legislation.

Roadmap

Thank VOU.

Bjørn Bauer

